
Software Assurance for the Emerging Discipline of Model-Based Design

Jane M. C. Oh & Martin S. Feather
 Jet Propulsion Laboratory, California Institute of Technology

jane.c.oh@jpl.nasa.gov & martin.s.feather@jpl.nasa.gov

Abstract

This paper addresses the novel challenges and

opportunities that model-based design poses to
software assurance. The novelty stems from the fact
that the models are deliberately made to be machine
manipulable, leading to a shift in emphasis and scope
of human activities vs. machine-conducted activities.
As a result, it requires a more closely coupled set of
processes and techniques to achieve the desired level
of product and process assurance. Opportunities arise
from the machine manipulable nature of the artifacts,
making them amenable to analytic methods and
automated tools. The significant advantages of
analytic methods over conventional assurance
practices stem from their superior thoroughness,
repeatability and applicability, especially when
applied to models. In response, we are working
towards an integrated software assurance process that
combines advantages of top-down and bottom-up
approaches to ensure the quality of the model and the
quality of the software implementation.

1. Introduction

NASA and other space agencies rely on ever larger,
more complex software systems to do more challenging
space missions. This trend raises the stakes and
increases the risks, and so drives the need for
breakthrough solutions to reduce risks. For example, for
the Mars Exploration Rovers, entry, descent, and
landing were software controlled, and relatively
sophisticated (for example, they included on-board
algorithms to analyze data from the downward-viewing
imager, ranger and inertial measurement unit to
determine horizontal velocity so as to direct lateral
thruster firings during descent [1]). Tom Gavin, the
associate director of JPL, said “…that is a software
driven system, and a lot of the project risk is in how
robust that software is… ” [2].

There is a critical need for assurance methods that
will be applicable to the verification and validation of
models. For example, Mars Polar Lander is thought to
have failed when the software turned off its engines too
soon. The flaw in the software-system design was
introduced when the software requirements were
derived from the system requirements, and was not
caught in subsequent review and testing [3]. Had there
been a system model, this flaw would have been
possibly detected - the (retrospective) application of a
model-based testing approach demonstrating this is
described in [4].

This paper addresses the novel challenges and
opportunities that model-based design poses to
software assurance, defined as “the planned and
systematic set of activities that ensure that software life
cycle processes and products conform to requirements,
standards, and procedures.” [IEEE 610.12, IEEE
Standard Glossary of Software Engineering
Terminology] For NASA this includes the disciplines of
Software Quality (functions of Software Quality
Engineering, Software Quality Assurance, Software
Quality Control), Software Safety, Software Reliability,
Software Verification and Validation, and IV&V.
[NASA-STD-8739.8]. The novelty stems from the fact
that the models are deliberately made to be machine
manipulable, leading to a shift in emphasis and scope of
human activities vs. machine-conducted activities. As a
result, it requires a more closely coupled set of
processes and techniques to achieve the desired level
of product and process assurance. Opportunities arise
from the machine manipulable nature of the artifacts,
making them amenable to “analytic verification” and
automated tool. NASA (National Aeronautics and
Space Administration) defines “analytic verification” as
“a set of techniques and tools based on mathematical
modeling and formal logic that are used to specify and
verify requirements and designs for computer systems
and software” [5]. Section 2 considers software
assurance, Section 3 analytic verification.

mfeather
Text Box
Presented at the 1st International Workshop on Aerospace Engineering (AEROSE 07)Minneapolis, MN, May 21-22, 2007

2. Software Assurance Process

The objective of the software assurance process is

to improve the quality of mission-critical software, and
the productivity of the software development process,
by detecting and removing errors and defects early in
the life cycle. A list of traditional software assurance
activities are shown in Table 1, along with the artifacts
to be checked throughout the life cycle (i.e.,
Requirement, Design, Code, Test/Debug, and
Operation) in practice at JPL.

Software

Assurance
Activities

Software Assurance
Artifacts

Software
Development
Process and
Monitoring

Software Development Plan, Project
Management Plan, Software Quality
Assurance Plan, Software Configuration
Management Plan, Software Risk
Management Plan

Subcontractor
Controls

Requests for Proposals, Statements-Of-
Work, Procurement Requisitions, Pre-
award Vendor Software Surveys

Software
Requirements
Analysis

Level 1, 1, 2, 3, 4, and 5 Requirements
Documentation, Functional
Specification, Interface Control
Documentation, Bi-Directional
Traceability, Operational Specs

Software Reviews Code Walkthrough, Unit Test
Walkthrough, Test Case Generation,
Code Run-time Monitoring, Code Static
Analysis

Formal Reviews Conceptual Design Reviews,
Preliminary Design Reviews,
Architecture Reviews, Detailed Design
Reviews, Test Readiness Reviews,
Assembly and Operation Readiness
Reviews

Management
Reviews

Fever Chart, Risk Assessment, Project
Insight and Oversight

Peer Reviews Software Reuses, Inheritance
Documentation, Test Plans and
Procedures, Test Results Verification,

Software Delivery
Reviews

Software Review Certification Records,
Release Description Document,
Acceptance Test
Plan/Procedures/Report, End Item Data
Packages

Software Safety
Hazard Analysis

Safety-critical Components
Assessment, Safety/Hazard Analysis
Report

Software FMECA
And Fault Tree
Analysis

Software Failure Modes Effect and
Criticality Analysis, Software Fault
Tree Analysis

Software
Configuration

Engineering Change Requests, Change
Control Report, Configuration

Management Management Report , Build List
Software
Problem/Failure
Reporting

Problem/Failure Report, Root Cause
Analysis Report, Action Items Report ,
Test Traceability Matrix

Verification and
Validation

Unit Test, Integration Test, System
Test, User Acceptance Test , Subsystem
Validation, System Validation,
Hardware Review Certification Records

Table 1. Software Assurance Activi t ies

JPL tailored IBMer Fagan's original process [6] of

software inspections to conform to its software
development environment in 1987 [7]. Inspections are
widely regarded as one of the most cost-effective
techniques in the assurance arsenal. We believe
inspections have the potential to be equally effective
for model-based design and thus we apply current
software assurance techniques such as software
inspections [8] and peer reviews [9] to those models
generated for flight software projects. A strategy is to
combine advantages of both traditional assurance
activities (e.g., peer reviews, milestone reviews, etc.)
and analytic methods to ensure the quality of the model
(e.g., the measures of correctness, completeness, and
conformance) and the quality of the software
implementation (e.g. the measures of defects, failures,
and efficiency). This integrated software assurance
process is depicted in Figure 1.

Figure 1. Software Assurance Process

Those traditional assurance activities listed in Table

1 will be changed in the move to dealing with model
based artifacts [10]. There will be fewer code
walkthroughs, and instead more model walkthroughs
and analyses using several emerging techniques such
as runtime monitoring (during simulation of the model),
static analysis (adapted to models), and model-
checking (by using SPIN). As a result, it will be
necessary to ensure the software community is ready
for model-based design and the increasingly
challenging missions’ software systems developed with
this paradigm. In this context, model-based design
offers both a challenge and an opportunity to
assurance: the challenge stems from the explosion in

Requirement Code Test/Debug Operation Design

Auto Code Model

Requirement
Review

Specification
Review

Auto
Simulation

Code
Walkthru

Code
Inspection

Model
Checking

detail and complexity, with which current software
assurance practices will be hard-pressed to keep pace;
the opportunity stems from the increased suitability to
analytic methods of the artifacts (models and
simulations) that pervade the model-based design
paradigm.

Within JPL and NASA, the emergence of model-
based design will reformulate the design process, and
the nature of software assurance must change
accordingly. Those assurance activities that will be
changed in the move to model-based are shown in
Table 2. Using model-based design combined with
auto-coding, there will be less time required to check
the 25 artifacts (listed in Table 2) out of the 60 software
assurance artifacts (shown in Table 1).

Software

Assurance
Activities

Software Assurance
Artifacts

Software
Development
Process and
Monitoring

Software Quality Assurance Plan,
Software Configuration Management
Plan, Software Risk Management Plan

Subcontractor
Controls

Statements-Of-Work

Software
Requirements
Analysis

Bi-Directional Traceability

Software Reviews Code Walkthrough, Unit Test
Walkthrough, Test Case Generation,
Code Run-time Monitoring, Code Static
Analysis

Formal Reviews Detailed Design Reviews
Management
Reviews

Risk Assessment

Peer Reviews Software Reuses, Test Results
Verification

Software Delivery
Reviews

Software Review Certification Records,
End Item Data Packages

Software Safety
Hazard Analysis

Safety-critical Components Assessment

Software FMECA
And Fault Tree
Analysis

Software Fault Tree Analysis

Software
Configuration
Management

Configuration Management Report ,
Build List

Software
Problem/Failure
Reporting

Action Items Report , Test Traceability
Matrix

Verification and
Validation

Unit Test, Integration Test, System
Test, User Acceptance Test

Table 2 . Changed Activit ies

3. Analytical Method

The significant advantages of analytic methods over
conventional assurance practices stem from their
superior thoroughness, repeatability and applicability,
especially for models (e.g., [11, 12]). However, despite
considerable JPL and NASA effort invested in them
[13], and successful pilot applications on NASA
spacecraft software (e.g., [14, 15, 16]), the uptake of
formal methods in JPL’s software processes has been
miniscule.

We believe the primary impediment has been the
effort needed to construct the formal models on which
to perform the analyses. In conventional software
development, these models take time to develop, and
require personnel skilled in both the system being
scrutinized and the mathematical underpinnings of the
analysis methodology. The result is an approach that is
costly, hard to find people to perform, and always
struggles to remain up-to-date with the rapidly
changing nature of flight project developments. Even
for so-called “lightweight formal methods” reported in
[16], where it is argued that the “benefit more than
outweighs the extra cost of maintaining several
representations”, infusing these into mainstream
practice is challenging. Model-based design
circumvents this impediment because the “models” of
model-based design can serve as the formal models for
analysis! Benefits will be greater yet if the formal
models are easily reusable.

This research aims to achieve early and more
thorough detection (and resolution) of problems. By
coupling analytic methods with automated tools, we
aim to increase the utility of those techniques: an
increased fraction of software related defects may be
detected earlier in the development process (i.e., well in
advance of testing). As illustration, two examples of
UML statecharts are provided in Figures 2 and 3. The
former has an unreachable state and the latter has an
undesired state.

Figure 2. Check the Unreachable States

Calibrating
Powered

Configuring

Recasting

Crunching

CrunchFailE
v

RetryEv

Waiting

Preposition

Running

Converge

Settle

Accelerating TestComplete
Ev

Testing
SettledE
v

VoltageUpE
v

AlignOffEv/Ano
m1

Anom
1 TestingCm

d

TimeoutE
v

AccelFail
Ev

Anom
1

ConfiguredE
v

CalibratedE
v

The state-machine shown in Figure 2 does not
satisfy the “reachability” property. The semantics of
this UML Statechart is such that when the Anom event
is generated, the transition from the Running state to
the Preposition state takes preference over the
transition from the Powered state to the Configuring
state.

Figure 3. Check the Undesired States

The UML statechart shown in Figure 3 consists of
three concurrently running state-machines
(MainControl, Run1, and Run2). The MainControl
state-machine is responsible for directing control by
sending internal command events to the Run1 state-
machine and the Run2 state-machine. There are 3
external events (e.g., Run1Ev, Run2Ev, and
TimeoutEv). An undesired state was found (Run1 = On
&& Run2 = On). In the correct model, the MainControl
state-machine must send out a command after it
receives an acknowledgement that the other state-
machine has transitioned to Off (Run1OffAck and
Run2OffAck).

When formal models exist, we need to reconsider the
purposes of human review/inspection. For simple
syntactic properties (e.g., detection of statecharts
lacking an initial transition), we may instead utilize
simple automation check the statecharts. Depending on
the modeling tool(s) used, such checking may already
be built in to the tool used to help in the construction
of models, or if not, can easily be provided in the form
of simple scripts that check the output of such tools.

Human review/inspection of models is well suited to
checking some of the validity of the models. But, for
properties that stem from the behaviors implied by
models (e.g., unreachability of states, analogous to
dead code in classical software), human inspection is
not particularly well suited. Likewise, when behaviors
involve multiple, cooperating statecharts, human
inspection is also challenged – in both of these cases
model checking is well known to be an appropriate
technique.

4. Conclusions

Two factors drive the need for this research. First,
within JPL and NASA, the emergence of model-based

design will reformulate the design process, and the
nature of software assurance must change accordingly.
Second, the scale and complexity of mission-critical
software is increasing as NASA’s missions become
more challenging.

The results of this research will have applicability
that spans NASA's mission suite: the stringent
reliability needs of NASA's human exploration activities
(Crew Exploration Vehicle, CEV and Constellation) of
ESMD (Exploration System Mission Directorate) relate
to model based approaches (e.g., Simulation Based
Acquisition), and thus dovetail with this research
focus. The use of model based design as a means to
accelerate the design and development process is
expected to continue in JPL's mission set.

5. Acknowledgements

The research described in this paper was carried out
at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration and funded
through the internal Research and Technology
Development program.

6. References

[1] Y. Cheng, J. Goguen, A. Johnson, C. Leger, L. Matthies,
M. San Martin and R. Willson, “The Mars Exploration
Rovers Descent Image Motion Estimation System”, IEEE
Intelligent Systems, 19(3), May-June 2004, pp. 13-21.

[2] P. Regan and S. Hamilton, “NASA’s Mission Reliable”,
Computer, IEEE, Jan 2004, pp. 59-68.

[3] JPL, Mars Polar Lander/Deep Space 2 Loss – JPL Special
Review Board Report, D-18709.

[4] M. Blackburn, R. Busser, Nauman, A. Knickerbocker, and
R. Kasunder, “Mars Polar Lander Fault Identification Using
Model-based Testing”, 26th NASA Goddard Software
Engineering Workshop, 2002, pp. 128-135.

[5] NASA, "Formal Methods Specification and Verification
Guidebook for Software and Computer Systems, Volume I:
Planning and Technology Insertion", NASA/TP-98-208193,
1998.

[6] M.E. Fagan, “Design and Code Inspections to Reduce
Errors in Program Development”, IBM Systems Journal,
15(3), 1976, pp. 182-211.

MainControl

Run1On

Run1Ev

Run2Ev

Run1

Off

On

SetRun1Off

SetRun1On

TimeoutEv

Run2Off Run2On

Run1Off

TimeoutEv

Run2

Off

On

SetRun2Off

SetRun2On

[7] J.C. Kelly, J.S. Sherif, and J. Hops, “An Analysis of
Defect Densities Found During Software Inspections”,
Journal of Systems and Software. 17(2), February 1992, pp.
150-166.

[8] R.A. Radice, High Quality, Low Cost Software
Inspections, Paradoxicon Publishing, 2002.

[9] K. Wiegers, Peer Reviews in Software: A Practical Guide,
Addison-Wesley, 2002.

[10] M.S. Feather, L.M. Fesq, M.D. Ingham, and S.L. Klein,
“Planning for V&V of the Mars Science Laboratory Rover
Software”, IEEE Aerospace Conference, March 2004.

[11] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit,
L. Petrucci, P. Schnoebelen, and P. McKenzie, Systems and
Software Verification: Model-Checking Techniques and Tools ,
Springer Verlag, 2001.

[12] G. Holzmann, The SPIN Model Checker, Primer and
Reference Manual, Addison Wesley, 2003.

[13] J.C. Kelly, "Formal Methods Specification and Analysis
Guidebook for the Verification of Software and Computer
Systems, Volume II: A Practitioner's Companion", NASA-
GB-001-97, 1997.

[14] D. Dvorak, “Challenging Encapsulation in the Design of
High-Risk Control Systems”, Conf. Object-Oriented
Programming, Systems, Languages, and Applications,
Seattle, 2002.

[15] F. Schneider, S. Easterbrook, J. Callahan, G. Holzmann,
W. Reinholtz, A. Ko, and M. Shahabuddin, “A Process for
Verifying and Validating Requirements for Fault Tolerant
Systems Using Model Checking”, Transactions on Software
Engineering, February 1999.

[16] S. Easterbrook, R. Lutz, R. Covington, R. J. Kelly, Y.
Ampo, D. Hamilton, “Experiences using lightweight formal
methods for requirements modeling”, IEEE Transactions on
Software Engineering, 24(1), January 1998, pp. 4-14.

